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ABSTRACT. We review the theory and upplications of the Bending-
Corrected Rotating Linear Model (BCRLM) to problems in the quantum
degcription of reactions between atoms and diatomic molecules,

1. INTRODUCTION TO BCRLM

The Bending-Corrected Rotating Linear Model (BCRLM) is a straight-
forward extension of the Rotating Linear Model (RLM) prorosed in the
late 1960's by Child,! Wyatt,* and Connor and Child.® The RLM con-
strains the dynamics of three dimensional (3D) collisions by requiring
the molecular species to maintain an orientation collinear with the
atomic species during the course of collision. The classica! dynamicsa
of three particles on a line was considered prior to this by Jepsen and
Hirschfelder,* and more recently by Agmon.® but the BCRLM i{s an out-
growth of the model presented by the authors of Refs. 1-3.

By neglecting the two internal rotational (or bending) degrees of

reedom, the mathematical description of the rearrangement collision
event is simplified so ertensively that the computational treatment of
reaction dynamics within this model is routinely possible. This compu-
tational simplication arises because the rotational motinn of the line
of collision is treated analytically by a partial wave expansion of the
acattering wavefunction. Consequently, the computational effort reduces
to that of a family of collinear reactive scattering calculations, one
for each partial wave term in the wavefunction expansion.

The obvious shortcominy of the RLM is its neglect nf the internal
rotational degrees of freedom. In comparison to the asymptotic vibra-
tional degrees of freedom, the asymptotic rotational degreea of freedom
impose a relatively modest constraint on the energetics of collision.



but they correlate adiabatically to higher energy bending states when
the collision partners are close together. The results of the earliest
accurate 2D and 3D coupled-channel calculations®*~!* for the H+H, re-
action showed that these bending degrees of freedom are important in
determining the encrgetic position of the reaction thkreshold. Conse-
quently, Walker and Hayea:® implemented the suggestion made in Wyatt's?
paper, and supplemented the RLM with an ad hoc correction to include the
adiabatic effects of the lowest energy bending degrees of freedom,
producing the bending-corrected RLM, or BCRLM. Including the bending
degrees of freedom as an effective potential within a collinear reactive
framework was first described by Mortensen and Pitzer!®:’” and is now
widely used by Bowman and coworkers!®-24 ip reduced dimensionality
theories of reaction, and by Truhlar and coworkers®®-?2 in variational
transition state theories of reactions.

In practice, all BCRLM calculations to date have been done so that
only the lowest energy (i.e., zero point) Lending state has been ex-
plicitly treated. At this level, the additional computational etfort
for a BCRLM calculation instead of an RLM calculation is minimal -- it
is necessary only to compuie an effective collinear potential energy
wurface which is the sum of the usual collinear potential and the
bending zero point energy determined at each collinear geometry. In
principle, however, a full treatment of the bending degrees of freedom
within the adiabatic approximat.on would require a family of RLM cal-
culations, one for each bending state.

Another obvious defect of both the RLM and BCRLM models is that
they assume a collinearly dominated reaction intermediate. While the
potential energy surfaces for many collision systems do favor collinear
geometries, there are of course many reactions which do not. Extensions
of the BCRLM mode]l are therefore needed to treat noncollinear systems,
perhaps along the lines defined by the Carrington and Miller?? reaction
surface Hamiltonian theory.

Tn the next section (Sec. 2), we will develop the theory of the
BCRLM. We discuss the solution of the coupled-channel equations in both
natural collision coordinates®*-?® and hyperspherical coordinates.??-4’
Both coordinate systems are widely used to treat collinear reactive
ascattering processes. We will discuss the projection*®:4* of the hyper-
spherical equations on coordinate surfaces appropriate for applying
scattering boundary conditions and review the definition of integral and
differential scattering cross sections in this model.

In Sec. 3, we will briefly review applications of BCRLM calcula-
tions to reactive systems and discuss in Sec. 4 some possible future
developments which may be made through extensions of the method. Sec. 5
then concludes wlith a summary.

2. THEORY

In this section, we will present a mathematical description of the
BCRLM. We will define the classical and quantum mechanical Hamiltonian
for the translational, vibrational, tumbling, and bending dogrees of
freedom for the system. After expanding the ecattering wavefunction in



a total angular momentum representation, we obtain coupled-channel equa-
tions which may be solved numerically subject to reactive scattering

boundary conditions. The soluticn of these coupled-channel eguations at
a fixed total scattering energy E and angular momentum J determines the

scattering matrix, §J(E). From the scattering matrix. we can then com-

pute reaction probabilities, integral and differential cross sections,
and reaction rate constants.

2.1, Internal Coordinate Systems

We restrict ourcelves here to the atom-diatom reactive collision
process defined cherically by the equation

A + BC(m) - AB(n) + C, (1)

in which A and BC are the reactant ator and molacule respectiveiy, and
AB and C are the product molecule and atom. The vibrational quantum
numbers of the reactant and product wmolecules are B and n respectively.
We further assume that the collision dynamics is represented by the
motion of the A, B, and C nuclei on a single Born-Gppenheimer electronic
potential energy surface, at snergies below the threshold for collision

induced dissociation. The atomic masses are defined as IA. IB. and lc.

Coupled-channs] equations arise in scattering dynamics when all but
one of the degrees of freedom of the systea are expanded in a square
integral baasis (of "channels"). The coupled-chaunel equations are then
solved numerically and describe motion in the unbound, or escattering
coordinate. The principal difficulty of any reactive scattering calcu-
lation is that the coordinate system which best describes the asymptotic
motions of reactants differs from the coordinate syater best suited for
products. Consequently, computational methods commonly use different
coordinate systems in different parts of configuration space. Boundary
conditions are expressed in terms of Jacobi coordinates (sometimes
referred to as "cartesian coordinates"), where in the A+BC arrangement
r is the internuclear separation of the BC molecule,

BC
-3
rac = ITgc! = I¥g - Fel (2)
and RA BC is the divtance between the atom anc the center ol mass of the
BC molecule,
-$
n?, +n?
A A BB
RA.BC " 'nA.BC' " '?C - -—;—-:—;—-—" (3)
A B

In Eqs. (2) and (3),the vectors ?A' ?B' and ?c locate the atoms A, B,
and C, respectively, relative to an origin of a space-fixed Cartesian

reference frame, and i?l denotes the length of the vector T. Equations



analogous to (2) and (3) are obtained for the B + AC and C + AB arrange-
menta by cyclically permuting the A, B, and C labels, and defire the
appropriate Jacobi coordinates for other asymptotic configurations.
Because the RLM and BCRLM consider only collinear or near-collinear
reaction intermediates, only a single arrangement of product species is
possible (as in Eq. (1)), and so we need to consider only the Jacocbli
coordinates for A+BC geometries (the o arrangement) and AB+C geometries
(the 7 arrangement). We then define mass-scaled Jacobi coordinates so
that motion in both r and R occurs with the same effective reduced mass.
These coordinates are

1 -1

- - - Q
Re "% Pabc: B =G Roap
T * qu Tpc ° r, = Q' TAB °
(B, + R, + m_)mm (4)
. A " P * Pc/Mpc
Q! ) m.(m_ +nm )2
A" * "¢

Early treatments of collinear reaction dynamics addressed the
coordinate problems associated with different asymptotic arrangement
channels by using natural collisior coordinates.?*-*®* The generic
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Figure 1. Collinear configuration space, subdivided into regions (I-1V)
in which different coordinate systems are used, Regione I and 1l are
for reactants. and III and IV are for products. M is a matching line

between reactants and products, and TC is the origin of the polar
natural collision coordinates used in Regions II and 111.



feature these curvilinear coordinate systems share is that they deform
smoothly from the Jacobi coordinates of reactants to the Jacobi coor-
dinates of products. In practice, BCRLM calculations!*® have used
natural collision coordinates*® which can be visualized with the aid of
Fig. 1. The NCC are actually plane polar coordinates with an origin
located at a turning center labelled TC in Figure 1. The TC has
projections q; and q; on the a axes and R; and ﬂ: on the ¥ axes. For

computational purposes, the collinear configuration space (between the
Rcl and Rv axes in Fig. 1) is divided into four regions. Regions I and

Il (reactants) are separated by a matching surface M from regions 111
and IV (products). In region I, containing geometries in which ﬁu>q;,

_1 \ ~
and tan (ra/Ra’ < 'a' Jat .bi coordinates Ra and r, are used. Similar
ly, in Region 1V, Jacobi coordinates R? and r, are used. Natural col-
lision coordinates u, and v, are used for configurations in Region 11,
within the triangle defined by (0, TC, R&): coordinates u, and v, are
used in Region III, within the triangle defined by (0, TC, R;). In
terms of %, and o' YUy and Ve are

®
R = Ra - naouslnru.

o
[ ]
Fo = To = MoPuCO87y: (5)
My = 1+ Y, /9.
2 -

r/2 - ca - ua/aa.
Equations analogous to Eq. (5) define Rv and r, in terms of u, and Vo

Natural collision coordinates defined in this way are convenient
for many reactive systems but have the drawback that one must decide
where to locate the turning center TC. Phytical considerations require
that {t be placed far away from the origin, in a region of sufficiently
high potential energy thut the scattering wavefunction, once determined,
will be negligibly small there. This requirement immediately implies
that these coordinates are unsuitable at scattering energies above the
threshold for ccllision induced dissociation.

A second problem is encountered for "neavy-light-heavy" (HLH)
systems in which the mass of the transferred atom B is small in com-
parison tn the masses of A and C. In such cases, the skew angle

(cav'ca+<1' see Fig. 1) becomes very small, and tunneling between the

reactant and product valleys may occur at large distances, requiring
that TC be located far from the origin. When this is dons, the vibra-
tional motion of the system is poorly represented by the v coordinate.
Consequently, slices of the potential at fixed values of u generate



broad effective vibrational wells whose shape changes rapidly with u.
As a result, a large basis of target functions in the v coordinate is
required in the coupled-channe]l equations at each of a large inumber of
integration steps in the coordinete u,

It is more economical to use hyperspherical coordinate systems?®-47
for HLH systems. For collinear configurations, these coordinates are
also plane polar coordinates, but the turning center is located at the
origin. These coordinates have had a wide application to collinear re-
actions,®%-%! egpecially those of the HLH variety. The hyperspherical
radius p 18 independent of the arrangement channel index

2 2 2 2 2

p = Ra *ry, - Ry +tr,, 0 <p <, (6)

and the hyperspherical angle depends in a simple way on a or ¥

tan® = qa/gu.
tan(cay-r) = rv/Rv' 0o<srsx cav' (7)

Whether the numerical problem is solved in natural coll.sion
coordinates or in hyperspherical coordinates, we st{ll must express
boundary conditions in the appropriate asymptotic Jacobil conrdinates.
In the natural collision coordinates of Fig. 1, there is a common boun-
dary between Regions I and II in the a couvrdinates, between Regions 111
and IV in v ~oordinates, and betw~=2n Regions II and Il] separating
arrangement channels. In a hyperspuerical approach, however, the
boundaries between regions which employ different coordinates do not
match. as in Fig. 2. Consequently, we must numerically project the
solutions of Schrodinger's equation inside the hyperspherical region
onto constant Ra and Rv surfaces, This projection is more complicated

in comparison to the analagnus but analytic projection procedures*®
recuired in the NCC approach. This asymptotic matching requirement may
be regarded as a miror disadvantage of hyperspherical coordinates.

2.2. The Classical Kinetic Energy

The classical kinetic energy of an A+BC system in a 3D center-of-mass
frame may be wricten in mass-scaled o Jacobl coordinates as

T - p/z[iﬁ N

¢ 2
o o

+ Ri(5a2+sln20a$§) + q:(é:+|1n2taﬁz)]. (8)

where ¢ is a reduced mass common Lo all arrangements (because of the
mass scaling of Eq. (4)),

1/2
Wm,M_M
" - A"B"c ' )
(my+mg+he)



In Eq. (8), Oa and qu are the spherical polar angles of the ﬁu vector in

a space-fixed coordirate frame (see Eqa. (3) and (4)). and tu and v, are

the corresponding spherical polar angles of the ?u vector.

The essence of the approximation in the RLM is to require that both
?a and ﬂa be parallel, and hence their spherical polar angles are equal.
The atoms A, B, and C now lie on a line in 3D, whcsz spherical polar
anglee are defined as ¢ and ¢, so that

e - oa - 91 = tu - tv'

Q-Qa-¢7¢ua-y1_ (10)

Consequently, the RLM kinetic energy is simpler than Eq. (8), namely,

T= p/2[R: + ii + (Rz + r:)(é2 + ain%D 62)].
; . . . (11)
- p/z[Rf + rf + (Ri + rf)(o2 + slnzo ¢2)].

In natural collision roordinates, the RLM kinetic energy becomes

2

T= p/z[nzﬁz + VS s pz(é2 + s1n20 ‘2)]. (12)

and in hyperspherical coordinates we obtain

T » p/2[ﬁ>2 + pzi’z + pz(é2 + slnzo $2)]. (13)

2.3. The Guantum Mechanical Kinetic Energy Operator

To cbtain the quantum kinetic energy operator, we first rewrite the
classical expression in terms of momenta conjugate tc the coordinates,
and then follow the prescription described by Podolsky®*? or Ma,genau and
Murphy.*! In a-channel Jacoti coordinates, we obtain
R el o o 1 8 a]J'
2

e m e | e e A e, o — pt
TRLM 2n | p* OR, P 8R_ " o' ar_ P ar_ el

! (14)

where J is the total angular momentum operator for the system

- 1 4 -mo" 1
2 o ol ——— — —_—
J N sine a8 8 ' sinfe :®7|" (18)

In natural collision conordinater, T becomes



- 2
RLM._._ ot 2 4 lanp’i + 3 (16)
nipt au du np? av av 2up?
and in hyperspherical coordinates we obtain
- 2 2 T2
2u 39 ap 2 ar? 2up?
P P
In the RLM, the Hamiltonian operator is simply
Heew = Trow * VapR-7) (18)

where VID(R.r) is the electronic potential energy hypersurface, for
collinear geometries. Of course, we assume VID may be evaluated as

needed in any of the required coordinate systenms.
2.4. The Bending Hamiltonian

We next elaborate upon the RLM to account approximately for the
neglected bending degrees of freedom. Bending is treated as if it is
adiabatically separable from motion in the R and r coordinates, as if
bending time scales were faster than time scales for translational and
vibrational motion. The true time scales associated with these motions
almost never satisfy these conditions (especially asymptotically), ex-
cept for some reactions with highly constrained linear intermediates and
at collision energies near the reaction threshold. Nevertheless, we
tnclude the bending approximation to improve the threshold behavior of
reactions, hoping that in some average sense, it may recover some of the
features expected from the internal rotational degrees e¢f freedom in a
more accurate 3D theory. However, the two degenerate bending modes
correlate to zero-frequency modes asymptotically, and not to the proper
diatomic rotational levels. Consequently, we cannot identify the re-
sults of a BCRLM calculation for a specific set of bending states with
those of a 3D theory for specific rotational transitions. However, ac
we describe later, we may identify bend‘ng averaged** BCRLM results with
rotationally averaged 3D results.

Fnllowing Garrett and Truhlar,®® we define the angle ¥ (not to be
confused with the arrangement channel index) as the bond angle between
the —?BC and ?AB vectors defined by Eq. (2). For small displacements in
the v angle, we may define a bending Hamiltonian for each (R,r) or (p.?)

ﬁ - hz 82 + V
bend —_— bend

21b 812

where Ib is a moment of inertia,

(v:R,r), (19a)



-1 2 ;-1 2 -1 -1,_-1 -1,2
Ty (m\Rup) ~ * [MRpel * + mg [R,g + Rpel (19b)
The eigenvalues of this Hamiltonian are ¢A(R,r).
- bend bend
bendwk = ‘A(R'r)wa (20)

and form an effective potential which, when added to the collinear poten-
tial surface, forms the BCRLM potential. We have therefore

VA,A,(R'r) = le(R'r) + ‘A,(R'r) + CA.(R.r), (21)
ghire L p Ly (Rup). (22)

BCRLM =~ "RLM = 'A,A,

The bending eigenvalue functions appear twice in Eq. (21) because of the
degeneracy of the two bending modes of a linear triatomic molecule. In
vractice, BCRLM calculations have been reported:®-%*4-?! only for an
approximate form of the bending eigervalue function, and for A,=A,=0.
The approximation used?® is expressed in natural col’lision coodinaies,

;A(u.v) - ¢A(u.v°). (23)

where vo is the value of v where the potential VID(u.v) has a minimum at

fixed u. This approximation has been used for computational convenience
but may have several disadvantages. The first problem!® ariscs because
the approximation is tied to the definition of the natural collision
coordinates. This dependency arises because thke position of the vib-
rational minimum vo depends slightly on the location of TC, and lires of

constant u are not perpendicular to the minimum energy path from the
gaddle point toward reactants (or products). A second prodblem arises in
hyperspherical coordinates, because Eq. (23) becomes quite cumbersome to
implement. and indeed, the effective potential becomes multivalued at
TC. A third problem arises at subthreshold collision energies, where
collinear calculations show that significant corner-cutting of reactive
flux occurs to the concave side of the minimum energy path. It has been
pointed out”’? that in this region, the approximate potential is likely
to be larger than L consequently, the barrier to tunnelling may be

overestimated. The simple solution to each of these problems is to
avoid the approximation Eq. (23) altogether.

2.5. The Coupled-Channel Equations

The angular momentum operator in Eq. (15) suggests that the overall
rotational degrees of freedom can be expanded in partial waves using
spherical harmonicae Yg(0.0). so that



«»
':'A'(R,r.o.O) -5 A: v‘:"*'(n.r) vg(om. (24)
J=0

where A, and A, label adiabatic bending states, J is the total angular
momentum quantum number, and m labels the initial vibrational state.

The coefficient Ai is chogen to satisfy asymptotic boundary conditions

in Sec. 2.8. We next expand the coefficient functions W:A‘A'(R.r) as

appropriate for each coordinate system. In Jacobl coordinates, we have

M N
JA.A: - -1 . .
¥, (R.r) = p 2 2 £ (Ri1JAAL) F (FidJAA,), (25)
i=1 n=1
and in natural collision coordinates, we have
M N
JA A, L -11/2 _ _
v (R,r) =p 'n E Egn.(u.iJA,A,)Gn(v.lJA,A,), (26)
f=1 n=1

and in hyperspherical coordinates, we have

M N

JALA -3/2

v MR = p 2 Ehn_(p:i.»\,a,) H(Pi10a,A,). 127)
i=1 n=1

In Eqs. (25)-(27), we subdivided configuration space into sectors, each
labeled by the index i; the boundary between sectors in each cocrdinate
system is formed by curves on which the propagation variables (R, u, and
p, respectively) are constant. Since the wavefunction expansion may
change from sector to sector, the functions £, F, g, G, h, and H depend
parametrically on the 1 index, as well as the total angular momentum
index J and the adiabatic bend quantum numbers A, and A,.

The functions F, G, and H are determined by solving a reference
vibrational Hamiltonian defined at the center of each sector,

[ w2 g - F
o S+ VR(RIAAL) - € (1AM, ) [F(riddrA,) < O, (28)
2u dr? n
s L3 ~
_'_'_ '_’_ + Vo (ViddaAe) - S e(viiama,) = 0, (29)
| 2u dv? n
[ 82 & - H
S 4w VL(P1IAA,) - & (1A A ) |H(P 10A,4.) = 0. (30)
L— zm' W' H n



The actual choice of the reference vibrational potential depends on the
particular application. In the RXN1D program,”® a quadratic reference
potential is chosen*® in the NCC and Jacobi coordinate systems, and the
functions F and G form a harmonic oscillator basis. In hyperspherical
coordinates, we use the entire prtential and determine the basis H by a
finite difference approach.
Combining £qs. (24)--(30) with Eqs. (14)-(18), we obtain the coupled-

channel equations for the propagation functions fnm(R). gnm(u). and

hnu(P). which after suppressing the parametric labels (1JA,A;) are,

N

dt

— fan(®) - 2 @) fhn(R), (31)
n'=0

d? :

aF gn-(u) = 2 (gc)nn' gn'l(u)' (32)
n'=0

a2 0

a;,- hnn(P) = 2 (gﬂ)nn' hn'n(P)' (33)
n'=0

where in Eqs. (31)-(33) tiie coupling matrices (we denote matrices by a
donb’e underline) are

h‘
2u L T
- ﬁz
<F_|V -V, + J(J+1)+1]|F_,>, 34
N (34)
2
- 3
(D), = _ 8 +
2 G'nn 2ot nn' (35)
(cnwn,)_ ha

E + ___[Ju+1)+1]}lon,>.
1" 2 2F¢f

2 2
h h 3
-— (9 ), = [¢ - E + [J(J+1) +_]]6 , +
2p H'nn n 200t 4 nn
. (36)
+ <Hn|V - VHIHn,>.

When we change the target basis (Eqs. (28)-(30)) between two adjacei.t
sectors, we must ensure that the wavefunction and its derivative are



continuous across the sec:or boundary. Enforcing this requirement
defines overlap matrices L4 in each coordinate system, and for Jacobi

coordinates we obtain

+
fon(Fyil) = 2 (U 1)) £ (Ryy 14D, (37)
nl
u!F(1.1+1)]nn, - <Fn(r:1)an,(r:l+1)>. (38)
where we have suppressed the labels (JA,A;) on the f's, F's, and T's.
In Eq. (37), R‘ and R; are the values or t..: propagation coordinate at

the inner and outer boundarjes of sector 1. Equations analagous to Eqs.
{37)-(38) also hold in the NCC and hyperspherical coordinate systems.

2.€. Solving the Coupled-CLannel Equations

The coupled-channel equations (Eq. (31), (32), or (33)), may be solved
in a variety of ways, but we use the R-matrix propagation method of
Light and Walker.4*:”?¢-?¢ e will review this method briefly in this
eection, as applied to the coupled-channel equations in Jacobi coor-
dinatez. The approach is essentially the same in other coordinates.
The coupling matrices D (Egqs. (34)-(36)) are evaluated at the center of

each sector, and are assumed to be constant across the sector. The real
symmetric D matrices are diagonalized by a real orthogonal matrix U,

vt ) un) = A%, (36)
where gT is tke transpose of uU. The matrix Y transforms to a locally

uncoupled revpresentation, and defines new propagation functions fnm(R:l)

in each sector,

I_‘(R;l) » U(i)-f(R;1). (40)
The global R matrix, between the initial sector and sector i, 1is
{(RO:O) i} El(i) 32(1) -f (R ;0) @)
-~ '
£(Ry:1) Ry(1) R (1) £ (R}:

The sector R matrix relating the values of the locally uncoupled
functiona to derivatives within sector (i+1) is

E(R;+1:l+l) I, (1+1) r,(1+1) -E'(RI*1:1+1)
- - . (42)
£(R,  i4+1)

“s
La(1+1) r (1+1) L § (R, qid+1)



where for copen channels (A? £ 0) we have

(g, (01, =05, (0], = 6 [- 101 eottary a1 ).

nn (43)
-1 9
[, (01 =gy (D1, = 8,0 [-1A (11 Tesctar 1a (1 ]
and for closed channels (A*? 2 0) the sector R matrix is
_1 9
[51(1)}nn"[54(1)]nn' - snn,(lan(l)l coth(ARilAn(i)l}'. ()

5, (0] =Leg (0] = 8,0 (1A (1)1 7 esoniar, 1a (1]

In Eqs. (43)-(44), AR1 is the width of sector i. The transformation
matrix from the locally uncoupled representation of sector i to the

locally uncoupled representatinn of sector 1i+1 is

T(1,1+1) = G (4)-G(4,4+1)-U(i+1). (45)
Assuming we know the global R matrix of Eq. (41), we can now compute the
global R matrix for sector i+1 using the sector R matrix of Eq. (42) and

the overlap matrix of Eq. (45). The R-matrix recursion relations are’’

R, (1+1) w By (1) = By(1)-T(4,4+1)-Z(1+1)-T7 (1, 1+1)-Bg (1),  (46)

R (1+1) = Ra(1+1) = By(1)- T4, ie1) Z(4+1) £, (4+1), (47)
R (141) = £ (1+1) = £ (1+1) 2U1+1) £, (S41), (48)
Z(1+1) = [£(4+1) = T (4, 441)R (1) T(1, 4+1)] 7" (49)

By repeatedly applying Egs. (46)~(49), the coupled-channel equations are
solved by propagating towards asymptotic regions of configuration space.
We also note’® that, if desired, we may propagate the R-matrix inverase
(the log-terivative or L matrix) with equations essentially the same as
Eqs. (46)-(49), where only the definition of the sector L matrix is
changed. At the conclusion of the propagation, we compute the scat-
tering matrix § by enforcing boundary conditions,

In the RXNID prugram,”? both the NCC and Jacobi coordinate systems
are used. We begin ec the collinear matching surface (M in Fig. 1) with
a sector R matrix as the first "global" R matrix, and propagate all four
blocks of the R matrix outwards toward the a-channel asymptotic region,
and then switch to a-Jacobi coordinates when gu-R;. For asymmetric sys-

tems (mAln propagation resumes at the matching surfeace, and proceeds

)\
c
toward the 7-channe]l asymptotic region, switching to v-Jacobi coordi-
nates when RV-R;. The a- and v-channel R matrices are then combined and

boundary conditions enforced.



In hyperspherical coordinates, propagation begins at a small hyper-
spherical radius, and continues to larger hyperspherical radii. Because
the potential is repulsive at small radii, only regular functions at the
origin are physically allowed, and in this case it is necessary to prop-
agate only the 54 block of the R matrix. As p increases, the angular

potential evolves fron a single well to a double well, one each for the
reactant and product molecules. At energies below dissociation, the
barrier between the two wells becomes large and broad enough that the
eigenstates of the angular potential are completely localized within
each well. For symmetric systeus (mA-nc). we may obtain degenerate

vairs of delocalized functions, but these are easily locali.ed (i.e.,

¥(local) = 2-1/2[¢,twg])- Once the angular eigenstates are localized,
we may continue propagating in Jacobi coordinates, or if appropriate, we
may enforce boundary conditions. However, in elther case we first
project the hyperspherical solutions onto constant %m (and Ry) surfaces.

2.7. Hyperspherical Projection

Asymptotic boundary conditions are most conveniently expressed in Jacobi
coordinates, and 30 if we solve the coupled-channel equations ir hyper-
spherical coordinates, we first express our solutions, defined on a
hyperspherical radius, on the appropriate Jacobi surfaces (see Fig. 2).

—
Ra

Figusca 2. Collinear configuration space, showing the projection of
hyperspherical solutions onto Jacobi surfaces. The solid arcs are the
irper and outer boundaries of the last hyperspherical sector, and the

0

dashed arc is the center of the sector. The Jacob{ surfaces q: and R:
intersect the dashed arc at the vibrational minima.



We describe in this section a procedure which determines a two-surface R
matrix (four blocks) from the single surface hyperspherical R matrix.
The procedure we describe is essentially that of Bondi and Connor, 4%.4®
except for minor differences in strategy (they evaluate asymptotic
boundary conditions directly on the final hyperspherical radius). We
begin by recalling the definition of the t'inal hyperspherical R matrix,

+ H \ +
E(PM'”’ = R:h (p".H). (50)
where here M labels the flinal hyperspherical sector (see Eq. (27)), and
pﬁ is the value of p at the outer boundary of this sector. Within the
last sector, the propagation functions (and their derivatives) aay te
expanded in sine- and cosine-like solutions, so that
— +
E(P.H) - g(P-M)'QM + g(P:M)'EM- PM Ssps P"- (51)
P - (M), ‘(O M) - M
h'(p:M) 8'(p:M) Ay v ¢ (p:iM) I_3H PySpPE Py (62)
where eM and EM are undeterpined coefficient matrices, constant within

the final sector, which depend on asymptotic boundary conditions. The
diagonal matrices gUD:M) and E(p;M) are

.M
sn(P) - llnlkn(p-pM)). channel n open,
- ainh[k:(p—pn)]. channel n closed, (53)
M
cn(p) - cos[kn(Pﬂpn)]. channel n open,
- conh[k:(p-pn)]. channel n closed, (84)

where pM is the value of p at the center of the final sector, and

(M2
Sny = 12y pnl (58)

By substituting Eqs. (81) and (532) into Eq. (50), we can relate the
coefficient matrices A and B,

Ay - EM'EH'

%, = [805y) - 8" (py) 1 Letoy) - B e (pp)]. (38)

We now require the right hand sides of Eqs. (23) and (27) to agree on
the projectlion surface Rm - q: (see Fig. 2),



-1/2 . M) -

PYES n M (M) = St (RD) F(r,). (57)
and a similar equation must also hold for the derivativea

L]

a%!

-1/2 . . - .
P 2T h e B i) - el GF) i) (se)

n' n

Two additional equations, similar to Eqs. (87) and (88), also hold on

the product surface R:. We next multiply by F;(qu) and integrate over
qm (and over r, on the product surface), and use Eqs. (851) and (52) to
obtain equations for the propagation functions in Jacobi coordinates,

(1) ' (2) 1

£(R) [ 0 B 0
« -1 ™ " la, s | ™ " |-B.. (59)
p 1y | ™ NETI

LD o 1M o 1P ]

- p - (3) ] (4)

£ (RV) I 0 I 0

R B N -V "]y (60)

ew@hy)] Lo Y o 1Y

where the a-channel matching matrices are defined (suppressing the M
label on the 8, ¢, and H functions)

[ P I e MO LN (81)
(2) /2
[Lm ]nn, - j F,(r) p] c..(p) H_,(P) dr,, (62)
(3) * -1/2,
-1
- (2p) nn,(p) Hn,(r) cos¥
-1 ., .
- o7 8 (P) KL (P) sine) dr,, (63)
[1“’] . j. F(r) p %(c: (p) K_.(P) cosP -
=0t nn' n o n' n'

- (2p)7!

- p! ¢ (P) M. () sine) dr. (84)

¢, (B) H ,(P) ciop



(1) () (3)

The off-diagonal blocks of the I N and !(4)

matrices in Eqs.
(59)-(60) are zero because we have assumed that the hyperspherical
angular eigenfunctions have becn localized in the reactant and product
potential wells. Referring back to Eq. (41), we can define an R matrix
for the Jacobi coordinates

£(rF) rf  RF £ (RF)
=) - =] =2 - o (65)
p F _F P | t
£x) 8l | | oad

Combining Eqs. (59) and (60) with Eqs. (56) and (65), the Jacobi R
matrix is devermined in terms of the matching matrices as

& - [ Vegy e 12 ) [ 19 - 1 ] (66)

where in [g. (66) we have implicitly arranged the rows and columns of X

to agree with the labeling implied by Eqs. (59)-(60). Having determined
the R matrix in Jacobi coordinates, we can now either continue the
propagation or apply asymptotic boundary conditions.

2.2. Boundary Conditions

The coupled-channel equations (Eqs. (31) and (34)) decouple at large
values of %m {or Rv), because in the limit that p + R, we obtain

2 2
h h
— (D) = (e, - E+ —lJs1)a]]8 . (67)
20 F'nn [ n 2uR ] nn

The form of E¢g. (67) implies that the functions rnn(R‘J) will approach a
linear combipation of Bessel functions of unusual order, because of the

J(J+1)+1 term. In our calculations, we havc ignored the additional 1/R2
centrifugal potential in applying boundury conditions, in order to use
the more familiar spherical Bessel functions. Our experjience has bLean,
and others have shown,”® that this approximation has a small effect on
the magnitudea 2nd phases of the final S-matrix elements. We therefore
require the functions fnn(R;J) to go asymptotically? as

o (1) (1) -1/2.J
£ (i) 1knR[AJ k mia  + i r) (e k)73 (ee)

where k" is the channel wavenumber hakﬁ - 2p(E-¢n). s:' is an element of
the S matrix, and the functions AJ
first and second kind, which themselves have the asymptotic behavior

are spherical Harkel functions of the

£ @) o lexpla(z - ms2)). (69)

The wavefunction of Eq. (24) must satisfy the boundary condition®



ArA, - w®
v. (R,r,0.,¢) F.(ra)explik.&!cosoa] +

+ R;l S exp[ik R ] Fo(r,) 4 (0.6), (70)

n
when Ra is large,

..1 [ ]
R, zexpukn,a,,] Flo(r) A, (6.8), (71)
nl
when Rv is large.
In Eqs. (70)-(71), the functions ﬁ'(r) are the eigenfunctions of the

asymptotic vibrational Hamiltonian, and 4(®,$) is the scattering
amplitude. Using the asymptotic form of fnn defined in Eqs. (68) and

(69) in the right-hand-side of Eq. (24), we determine the expansion
coefficients A: in Eq. (21) and the scattering amplitude 4nn by equating

with Eqs. (70) and (71). The coefficients A: are determined by equating
the coefficients of the incoming spherical waves, obtaining

A: - k.“ 191 [x(2041))2 (72)

The scattering amplitude is similarly determined by equating the
coefficients of the outgoing apherical waves, after first expanding Anm

in Legendre polynomials. We obtain?

[ ]
-1/2 J
A, 0.6) = 1(ak k) 2 (2J+1) (8-S ) P (cose). (73)
J=0

The calculation of the S matrix from the final R matrix is accom-
plished by rewriting Eq. (68) and its derivative in matrix form,

£(RiJ) = 4(3) - ga)k 7287 2,

(74)
£1(R:J) = 2'(0) - g () k212, (75)

where {(R) and {'(R) are matrices of the values of the propagation

functions and their derjvatives on the final R-matrix boundaries in both
the a and v arrangement channels. Here the dlagonal # unc 0 matrices

(and their derivatives) are the spherical Hankel functions of Eq. (68),



CIEIS TS WALTN (76)
(£, = ] . (77)

where * denotes the complex conjugate. The ¢ matrix defined here should
not be confused with the overlap matrix used in Eqs. (37), (38), and
{(45). Defining the final R matrix as g? and combining the definition of
the R matrix (see Eq. (65)) with Eqgqs. (74)-(75), the S matrix is

g’ k2 o) - e )] o) - o] EVE (e

2.9, Differential and Integral Cross Sections, Thermal Rate Constants

The differential scattering cross section in the RLM is defined as
usual, the ratio of the spherically scattered flux into final state n
originating from an incident plane wave in molecular state n,

g-':'nm
dn
where An.(O,Q) is defined in Eq. (73). The integral cross section is

2
(@ ,9;E) = (kn/km) |Anm(0.¢)|, (79)

obtained by integrating over the polar angles, giving the familiar form

L ]
-2 J 2
o, (E) = ®k_ > (20+41) 18, =S, 1 (80)
J=0

From the integral cross section we can compute a state-to-state
thermal rate constant in the standard way,’®

3/2 -1/2
Kan (T} = N (2/KgT) 7 (R, pe) x
L
x Io Et onm(Et+¢n) exp[—Et/kBT] dEt. (81)

where N is Avogadro's number, kB is Boltzmann's constant, Et is the
init{al translational energy of reactants in vibrational state m, and
Ma BC je the reduced mass vf the initial collision partners.

Mp,Bc = Pa(Rg ¥ Mc)/(my + mg s me). (82)

Definjtions similar to Eqs. (79)-(81) also hold for differential cross
sections, integral cross sections, and rate constants in the BCRLM, ex-
cept that each is obtained for every choice of bending states A, and A,.



2.10. The Relationship between RLM/BCRLM and LD -- Rotational Averaging

Although cross sections and rate constants in the RLM are well defined
quantities, it is nevertheless difficuit to compare directly to full
three-dimensional calculations because the RLM neglects internal berding
snd rotational degrees of freedom. Philosophically, it is better to ask
how one should sum or average the results of full 3D calculations in
order to obtain quantities which best compare with the models. Since in
the RLM or BCRLM, the diatomics do not rotate before or after the col-
1ision, we may be tempted to compare 3D (n,j=0) -+ (n',j'=0) processes
with RLM nen' processes. In cases where such comparisons can be made,
the RLM probabilities, cross sections, and rate constants are larger
than the corresponding 3D quantities at all energies and temperatures.
The comparison is improved for 3D processes from (n,j=0) to (n',all j');
but even here, RLM results are too large, especially at reaction thresh-
olds, where at least for the cas2s where detailed 3D results are avail-
eble,*°%.:13% threshold behavior is strongly influenced by the bending
zero point energy of the collision complex in the strong interaction
region (i.e., the transition state). It is this latter effect which we
address to some extent by augmenting the RLM with a bending Hamiltonian.

The inclusion of effertive potentials into the BCRLM in order to
account approximately for the neglected bending degrees of freedom in
the RLM should make it possible to compare more directly with 3D calcu-
lations. Such comparisons are difficult because bending motion is
relevaunt only when the collision partners are close together, and not
asymptotically, where boundary conditions are imposed and where the
angular motion becomes that of a free rotcr. Although the lowest
bending states A, =Ay;=0 do correllate with the lowest free rotor states
J=)'=0, we cannot generally define a mapping between higher bending
statea and higher free rotor states. Consequently, comparisons between
BCRLM and full 3D calculations require that we average both sets of
results.*4:”? In the BCRLM, we average over the bending degrees of
freedom labelled by A, and A,, and compare to 3D calculations averaged
over the analogous rotaticnal degrees of freedom j, j', 1, and 1', where
l i{s a label for orbital angular momentum.

The appropriate kind of rntational averaging has been discussed for
several years by Bowman and coworkers,!®-%4 in connection with a hier-
archy of dimensionality reducing theories of reactions. Although the
BCRLM differs in origin from these dimensionality reduciug theories, it
resembles them in spirit, and in detail at some levels. Specifically,
the application of microcanonical rotational averaging to BCRLM has been
presented by Walker and Pollak,** and we will review only the final
results here.

In this section. we use square brackets ([]) to indicate quantities
which have been microcanonically summed, braces ({)) to indicate
quantities which have been microcanonically averoged. and angle brackets
(¢<>) to indicate quantities which have hmen thermaily averaged. The
appropriate 3D microcanonically avrraged rotational cross section with
which we wish to compare jg4*.9%°



2
(ann(E)) - R [’n.(E)] / [k- ]. (83)

where [k.zl is a cumulative translational wavei.umber for reactants,

[ ]
2 -2
(k51 = 2, (B° 5 (29+1) (E-e ) @(E-e ), (84)
3=0
and € is the internal 2nergy of the initial molecule in vibra<ional

Rj
state m end rotational state j. The Heaviside function ©(x) in Eq. (84)
indicates that the summation runs over only open channels at total
energy E. In Eq. (83), [,nn(s)] i3 a cumulative rotational probability,

which for a full 3D calculation s defined as

J
[0 (B)] =2 (21+1) 5 3 Pl (B ), (85)
J=0 J.j'=0 1,1"

where the sums over 1 and 1' :un over the triangle inequality with J and
. J
J (or j'), and Pn_,.l.,”1
square of an element of the 3 S matrix.
In the BCRLM, the cumulative reaction probability is one in which
we sum over the bending degrees of freedom, approximating Eq. (85) as

is the reaction probability, th= absolute

@ A ®

P ()] =a S S, Jiaen piutE), (86)
A=0 A=-A  J=|0|

where A is a principal btending guantum number (A = A, +A,), A is an
internal bending angular momentum (A = A,-A,), and the notation I,
indicates that the summation over A goes in steps of two. The reaction
path multiplicity factor A in Eq. (88) assumes values of one or two, the
latter for the case of an initial homonuclear diatomic. In practice, %
we have further approximated Eq. (86) by writing reaction probablilities
for higher bending states in terms of those for the loweat bernding
state, using transition state theory arguments. '?®.24

Given the cumulative reaction probabilities, we can compute
thermally averagesd rate constants,

2 1/2
Knn(T) = hON(2r) (”A.BCkB

where Q. is che rotational partition function

-3/2

T) 0“(5)> / Q.(T). (87)

®
Qu(T) - 3 (2441) exp(-€_ /kyT), (88)
J-0

and the thermal average of the cumuiative reaction probability is



o (E)> = jo exp(-E/k,T) I*__(E)] <E. (85)

3. REVIEW OF APPLICATIONS OF THE BCRLM

To date, the BCRLM has been applied to a handful of chemically reactive
systems, namely the hydrogen exchange reaction H + H2 and its isotopic
counterparts,$®.¢4,¢% and to the F + H2 reaction and its isotopic
counterparts.®¢-¢* SGome preliminary results have also been presented*’
for the .'e + Hz’ reaction as well. Lagana’! has extended the

calculations for the H+ll2 reaction to higher collision energies, and de
Haar, Balint-Kurti, and Wyatt’® have considered the H + clz reaction.

We have already discussed in the previous section an zxtension*? of the
BCRLM in which we define averaged cross sections and rate constants;
when applied to the D+H2(l'0.l) reaction, we obtained an exrcellent

conparison with shifted nudden calculations of Abu-Salbi, Kouri, Shima,
&nd Baer.®!.°?2

The primary concern of the first BCRLM paper!® was to investigate
the extent to which the 300K rate constants (RLM and BCRLM) for the
reactions H + Hz(l-l) and D + Hz(n-l) are determined by collisions at

energies below the height of the adiabatic reaction barrier. The rate
constants determined were compared to experiment®?:-?? and to a classical
trajectory calculation,®® but since they are not rotationally averaged,
theae rates are certainly an upper limit to the true rates on the
potential surface®®:*” we uged.

Our interest turned then to the relationship between scattering
resonances and the angular distribution (differential cross section)
predicted by the BCRLM. We showed*® that for both reactions mentioned
above, the angular distribution moves {rom backwards peaked at low
collisior energies to more sideways peaked at higher energies, even
though the reaction dynamics at threshold is dominated in the H+H2(m-1)

case by a resonance and no resonance appears in the D+H2(l-1) case. Our
intereat in this relationship was sparked by the F+H2 reaction, which

also shows®®*-*% a ghift in the angular distribution, and has a definite
threshold resonance contribution. We therefore analyzed**®* the BCRLM
angular distribution for the F+H2 reaction, and corcluded that while the

presence of = threshold resonance does contribute to the sideways shift
in the angular distribution, it is probably not the only source of the
feature. Pursuing this idea further, we attempted to separate the
resonant and background contributions to the angular distribution in a
following paper,®’ using isolated narrow resonance approximations.

We have also used the BCRLM as a tool to investigate the
relationship between parameters which define potential energy surfaces



and dynamic features such as rescnances, angular distributions,*® and
the position of reaction thresholds.*® This work has concentrated on

the F+D2 reaction, and has alded the development of improved potential

energy surfaces.%?.%¢

4. EXTENSIONS AND FURTHER APPLICATIONS OF THE METHOD

There is currently work in progress which will extend some of the ideas
of the BCRLM either to improve the quantitative reliability of the
method, or to enlarge the range of problems to which it is applicable.

4.1. Hybrid Sudden and Adiabatic Methods

As is evidenced by recent literature®’-3°° and in other contributions in
this volume. there is considerable interest in understanding the nature
of the rotation-bending dynamics of reactions in the energy regime near
the reaction threshold. For many reactions, and perhaps for most
reactions, the dynamics of bending motion at threshold is adiabatic, but
above threshold energies, the motion seems to switch over to a sudden
type of behavior.®® Consequently, work in progress!®®-! would define a
hybrid sudden-adiabatic theory which would produce reaction cross
sections in agreement with adiabatic thresholds (e.g., BCRLM) and in
agreement with reactive sudden cross sectiong®:-2.102-3 gt hjgher col-
lision energies. If this work proves fruitful, and we learn how to
model the crossover between adiabatic and sudden reaction dynamics, then
we may hope to considerably improve the predictive nature of approximate
theorjes of reactions.

4.2. Non-collinearly Dominated Reartions

The BCRLM is by its very nature constrained to treating collinearly
dominated reaction proceases. One could extend the method to non-
collinear systems by including effective potential terms and more
complicated kinetic energy opcrators to represent the motion of the
reacting system along ite (bent) minimum energy path firom reactants to
products. This is indeed &n example nf the Carrington and Miller®?
reaction surface Hamiltonian theory, which at present is probably the
most fruitful approach for noncollinear systess.

4.3. Coupling the Bending Degrees of Freedom

A fairly straightforward axtension of the method would be to include the
coupling between the lowest and higher bending degrees of freedom while
solving the coupled-channel equations. Such an approach say have the
beneficial effect of lowering the overall reactivity characteristic of
the BCRLM at post-threshold energies, since inelastic bending tran-
sitions may reflect otherwise reactive flux prior to reaching the re-
action barrier. Unfortunately, there is no significence to individual



bend-state to bend-state cross sections, because bend states have no
well defined asymptotic meaning; we would therefore still need to rota-
tionally average (i.e., bending average) our results. Furthermore, any
improvements would come at the cost of substantially increasing the
computer requirements of the method, to a level comparable to 3D centri-
fugal sudden (CS) reactive calculations. If such a level of computer
effort is avallable, it would therefore seem appropriate tc do the 3D CS
calculation instead.

4.4. Photodissociation of Linear Triatomics

A promising extension of the BCRLM to new problems lies in the photodis-
sociation of some triatomics. The application of quantum half-
scattering methods to problems of photodissociation is well known,'®’-*
and for molecules whose ground and excited electronic surfaces are line-
arly dominated, the approximatiors inherent in BCRLM are quite appro-
priate. To treat photodissociation, we must compute the overlap of the
scattering wavefunction on the excited electronic surface with the
initial bound state wavefunction on the ground surface. Methods for
computing the required overlaps as the R-matrix solution of the coupled-
channel equations progresses have been described by Kulander and
Light!*°¢ and by Schneider and Taylor.:°® In addition to its relevance
to photodissociation. these techniques provide a way to recover the
scattering wavefunction from an R-matrix calculation, since the "bound
state" wavefunct.on can be a deita function or a narrow gaussian. The
technique for accumulating these overlaps resembles the hyperspherical-
to-Jacobi projection described earlier, and so we will review it here.
Using the Jacobi coordinate system as an example, we seek the
overlap xnm of the scattering wavefunction Wm in Eq. {(24) with a bounded

function 'n(R.r). We begin by expanding the propagation functions in

each sector with sine- and cosine-like functions,

sn(R;i) - sln[k:(R-RI)]. channel n open,
s (R;1) = slnh[ki(R—Rf)]. channel n closed,
n n i
(90)
cn(R;i) = coe[k;(R—«I)]. channel n open,
cn(R;i) - cnsh[k;(R-RI)]. channel n closed,

where k: is the local channel wavenumber in sector i. Note specifically

that we are expanding about the right-hand-side of each sector, because
it simplifies the propagation of the overlaps. Next we define primitive
overlap integrals of the bound function(s) in sector {,



+

i
i

[b_l,,lnll - IR_ 7.(R.r) s-(R:i) F (r:1) dR, (91)

i

R'I’

1 1
NJm ™ J;_ F.(R.T) c (R:1) F_(r:1) dR. (92)

i

Note that if 'n(R.r) - 6(R-R:) B(r-rz). or is a narrow gaussiani®®.iie

centered at (R:.r:). then the integrals above are easily evaluated.
If R(1) is the global R matrix accumulated after propagating
through sector i, we then compute from it a local overlap in sector i,

d(i) = N‘-[g(i)-;‘]" + gi.

N, (93)

and a xatrix relating overlaps in sector i to those in sector 1+1,
g(i,1+1) = 3(1.1+1)-[g(nf*‘)-[§(1+1)-5‘*‘]“ . g(nf")]. (94)

where T 18 defined in Eq. (45). and the diagonal 8 and c matrices are

defined in Eg. (90). The accumulated overlap through sector i+1 is now
given by

D(1+1) = d(1+1) + D(4)-Q(1,1+1). (03)

The overlap propagation begins with g(l) - g(l) and continues through

the sector whera boundary corditions are imposed. At this point we
compute the desired overlap matrix by taking the same linear combination
ol the propagated overlaps as for asymptotic boundary conditions (see
Eq. (74)),

-1/2

£ = D(final): [s - ¢.x"1/2.g -51/2]. (96)

It should also be clear that a similar approach could be employed, if
desired, to propagate overlaps of bound state wavefunctions with the
gradient of the scattering wavefunction. Note from Eqs. (83)-(94) that
the propagation of overlaps requi-es at each step an inversion of the R
matrix; if one propegates the log-derivative matrix’* instead of the R
matrix, then the propagation of overlaps by this scheme requires only a
few additional matrix multiplications at each step.



5. SUMMARY

The Bending Corrected Rotating Linear Model should be useful as a tool
for insight into the importance of some of the three-dimensional
features expected of collinearly dominated atom-diatom reactions. The
Rotating Linear Model, defined by Child.! Connor and Child,® and by
Wyatt,? augments the collinear world naturally with an impact parameter,
making it possible to compute integral and differential cross sections.
Adding a bending correction then improves the quantitative predictive
ability of the method, and permits a more direct comparison with 3D
rotationally averaged integral cross sections and rate constants.

Additional theoretical refinement is needed before we can
quantitatively compare BCRLM differential cross sections with 3D. The
shape of the BCRLM differential cross section contains information about
the impact parameter dependence of the reacticn probabjlity, and when-
ever the 3D angular distribution retains only this level of dynamical
detail, we would expect the BCRLM differential cross section to compare
nicely. Consequently, it is likely that BCRLM will fare best when
compared to 3D differential cross sections from the ground state of
reactants to all product rotational states, since this type of cross
section retains the least amount of rotational information.
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